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Abstract

This paper examines how rising temperature due to climate change will affect electricity
consumption patterns through mid- and end-century. We extend recent literature in two
important ways. First, we directly incorporate adaptation in the form of increased air
conditioner penetration, resulting in heightened responsiveness to hot temperatures. Second,
we go beyond average effects to consider how higher temperatures will change the intraday
and seasonal shape of consumption. This is found to be of greater importance in colder
countries, where the average effect is dampened by reductions in heating demand from
warmer winters. Seasonal peaks are projected to shift from winter to summer and the
diurnal range of hourly consumption expands, exacerbating an increasing need for flexibility
coming from the supply side due to a growing share of renewable energy.
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1 Introduction

Climate change will affect many social and economic outcomes. However, the magnitude, and

in some cases the sign, of these effects is the subject of considerable debate. Thus, the need for

more evidence-based empirical estimates of the potential effects of climate change is important

to improve adaptation capacity as well as for understanding its costs.1 This paper examines

the effect of rising temperatures due to climate change on one such outcome: future electricity

consumption.

We consider how rising temperatures by mid- and end-century will alter both the level

and timing of electricity consumption across Canada. While several studies have looked at the

relationship between climate change and overall energy consumption (Isaac and van Vuuren,

2009; Davis and Gertler, 2015; De Cian and Wing, 2017; Wenz et al., 2017), a less explored area

of the literature is how climate change will affect the intraday shape of consumption. The latter

is of particular importance in electricity where supply must equal demand in every hour and

storage is costly. Our study fills this void.

Our results suggest a large increase across all provinces in ramping requirements—the

range between minimum and maximum hourly consumption within a day—increasing the

need for greater flexibility in future electricity systems. This finding from the demand side

echoes a similar need coming from the supply side, where an increasing share of variable

energy renewable resources is placing a greater importance on flexibility to meet larger ramping

requirements.

We find significant heterogeneity in temperature sensitivity across provinces and, corre-

spondingly, regional differences in projected electricity consumption. This is most notable in

projected changes to peak demand—the maximum hourly demand within a year. The largest

increase is predicted to occur in Ontario, a province that is currently summer-peaking, where

we project peak demand to increase by 38%. In winter-peaking provinces, such as Quebec,

which rely predominantly on electric heating, we project declines in peak demand despite

growth in summer demand. In most provinces, however, we project a seasonal shift from

winter-peaking to summer-peaking electricity grids, turning Canada into a summer-peaking

country by end-century.

We find a relatively small increase of 4% in the overall level of electricity consumption

across Canada, with rising summer demand offset by a reduction in winter demand. This

result includes the effect of adaptation in the form of more air conditioner penetration and

1Previous literature has explored the effect of climate change on mortality (Barreca et al., 2016; Heutel et al., 2017),
economic growth (Dell et al., 2012), economic production (Burke et al., 2015) and human capital (Graff Zivin
et al., 2018), to name a few. In terms of future energy demand, several studies have examined the nonlinear
effect higher temperatures are expected to have on electricity demand (Auffhammer and Aroonruengsawat, 2011;
Auffhammer et al., 2017; Davis and Gertler, 2015; Wenz et al., 2017). Kahn (2016) offers a review of the climate
change adaptation literature.
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at the most extreme temperature scenario. This stands in contrast to much larger projected

increases in future electricity demand from studies in warmer climates (Isaac and van Vuuren,

2009; Akpinar-Ferrand and Singh, 2010; Davis and Gertler, 2015). This result highlights the

mitigating effect of a warming climate in a cold country such as Canada, whereby increases in

summer cooling demand are largely offset by decreased electric heating demand from warmer

winters.

Our empirical analysis consists of two parts. First, we estimate the relationship between

temperature changes and electricity consumption to create temperature response functions, i.e.

the marginal effect of temperature on electricity consumption. We then combine our estimated

temperature response functions with projections of future temperature from an ensemble of

global climate models under various emissions scenarios to project changes to the level and

timing of future electricity consumption by mid- and end-century.

To estimate the causal relationship between temperature and electricity consumption, we

draw on public and private data sources to construct an original dataset of hourly observations

of electricity consumption for every Canadian province over the period 2001–2015.2 We find

temperature response functions characterized by a familiar U-shaped relationship: at colder

temperatures, rising temperature leads to decreased electricity consumption due to less need

for heating; whereas at warmer temperatures, rising temperature increases demand for cooling

services and thus electricity. However, these estimates represent only the short run response, i.e.

the assumption that future behaviour and technology matches that of today—an unsatisfactory

result for long run projections.

To incorporate one potential dimension of adaptation, we exploit the significant hetero-

geneity in temperature responsiveness across provinces. These differences correspond to key

observed differences in underlying ways electricity is used across provinces—differences in

air conditioner and electric heat penetration, and residential share of total consumption. Re-

estimating temperature response functions based on these key observables, allows for the

estimation of future temperature responsiveness at various counterfactual levels that reflect

potential adaptation in the form of air conditioner uptake. We then inform our adaptation-

inclusive scenarios by estimating a model of air conditioner adoption using household-level

microdata. We find by end-century, under most emission scenarios, residential air conditioner

penetration across Canada reaches well above 90% in most provinces.

Combining our model of air conditioner adoption with the above temperature response

functions delivers long run adaptation-inclusive demand projections—in effect, at higher levels

of air conditioner penetration, electricity demand becomes more responsive (i.e. increases more)

2We thank representatives from multiple balancing authorities and grid operators for their willingness to provide the
data. To the best of our knowledge, no other hourly multi-year panel dataset of Canadian electricity consumption is
readily available.
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at hotter temperatures. Our results show a warmer climate leads to an increase in summer

demand, an increase in peak hour demand in summer peaking regions and a shift to summer-

peaking more generally, an expansion of the minimum to maximum intraday range of demand,

and an overall—albeit small for Canada as a while—increase in average demand.

It is important to note that our results throughout this paper take the form of ceteris paribus

projections. That is, we estimate the impact of changes in temperature on electricity consump-

tion and on air conditioner adoption, holding all else equal. Of course, over the long time

horizons we consider, many other variables will affect electricity demand, and changing temper-

atures will affect many other variables in addition to electricity demand. Our results should

therefore be taken as the marginal effect of changing temperature on electricity consumption

holding other factors constant, not as unconditional predictions of future electricity demand.

Our paper contributes to a new and growing literature, building on three recent studies

that explore the effect of climate change on electricity demand. First, in terms of regional

heterogeneity, our paper finds similar results as Wenz et al. (2017): rising temperatures do

not significantly increase electricity consumption in a cold country, such as Canada. However,

whereas Wenz et al. (2017) focus on regional heterogeneity driven by large climatic differences

between southern and northern European countries, our paper finds differences in projected

electricity consumption changes within Canada, despite relatively similar climatic conditions

across provinces. Instead, we find heterogeneity driven by large variation in temperature-

sensitive uses of electricity. Our finding emphasizes the importance of understanding underlying

drivers of temperature-sensitive demand.

Second, Auffhammer et al. (2017) emphasize the importance of looking beyond average

effects in difficult-to-store electricity, projecting changes in both average and peak demand.

We extend this, going one step further using our hourly granularity to estimate changes in the

intraday shape of demand. This aspect is particularly important for electricity systems already

grappling with large swings in intraday supply from a growing share of renewable resources.

Considerable attention has been paid to the electricity “duck curve”, so-named due to the shape

of intraday net demand characterized by a midday belly of low net demand when solar is

generating at its fullest, followed by a steep ramp in the late afternoon having the appearance of

a duck’s neck (CAISO, 2016).3 Our results provide evidence of the need for even more flexibility

to manage greater intraday variance coming from the demand side as well.

Third, we develop a tractable method to incorporate both the intensive and extensive mar-

gin of adaptation (in one dimension only—air conditioner adoption) into future projections

of temperature-induced demand changes. Similar to Davis and Gertler (2015) we model the

adoption of air conditioners in response to changes in temperature using household-level mi-

crodata, which can be used to project future air condition penetration in a warming climate.

3Net demand is defined as metered demand net of renewable generation.
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However, whereas Davis and Gertler (2015) use this information to project future consumption

by assigning a temperature response function from a region with currently high air conditioner

penetration levels, we estimate temperature response directly as a function of air conditioner lev-

els and other temperature-sensitive observables. This innovation allows us to use the projected

air conditioner penetration levels directly, while maintaining region-specific characteristics, to

project future electricity consumption changes with adaptation.

In a recent paper, Auffhammer (2018) exploits significant cross-sectional variation at the

household level to estimate the relationship between temperature sensitivity and extant climate

conditions. In doing so, this approach provides a reduced form method to incorporate adap-

tation by making temperature response a function of prevailing climate. This is a promising

straightforward approach with the requirement of significant cross-sectional data. Our method

is comparable and both papers seek the same thing: the effect of changing climate on electricity

consumption, incorporating elements of adaptation. Our method unpacks the relationship by

decomposing the change into its components: the direct effect of temperature on consumption

and the indirect effect of temperature altering the stock of temperature-sensitive durables, such

as air conditioners, and the corresponding effect of higher levels of air conditioner penetration

on consumption. Thus our method offers different insights as to the channels driving the

changes.

2 Conceptual Framework

We motivate the empirical analysis, with a simple representation of electricity demand that

responds to temperature and other factors:

y = f (T ,D(T ),X) (1)

The first element is the direct effect temperature T has on electricity demand y. The second

term allows temperature to affect demand indirectly via D(T ). We can think of D as a vector

of durables whose stock is both influenced by temperature and in turn alters the temperature

sensitivity of demand.4 As a concrete example, one can imagine the stock of air conditioners in

a region to be an element of D. Higher temperatures directly affect the stock of air conditioners,

and in turn the higher stock increases the temperature sensitivity of demand as a result of more

air conditioners turning on during heat waves.5 Conversely, one can also imagine a different

element of D that has the opposite effect. For example, the stock of energy efficiency, such as

4We use the label durables as we focus on the role of air conditioners and electric heating, however, D encompasses a
broader set of factors, including societal norms and behaviours that influence temperature sensitivity.

5More precisely, higher expectations of future temperatures are likely to drive decisions regarding durables stock. We
ignore differences in timescale here, but address them in the empirical work that follows.
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better home insulation, is likely affected by changes in temperature, and a higher stock dampens

the temperature sensitivity of demand. Lastly, X captures other variables that affect demand

independently of temperature.

To see how temperature changes affect demand, we differentiate Eq.(1) with respect to T :

dy

dT
= fT︸︷︷︸

Direct effect
or

Intensive margin

+ fD
dD
dT︸︷︷︸

Indirect effect
or

Extensive margin

(2)

Equation (2) demonstrates the components of demand response to temperature. The first

term, fT , is the direct effect of changing temperature holding the stock ofD constant, i.e. ∂f (T ,D̄)
∂T .6

The second term is the indirect effect. It is the product of temperature changing the stock of

durables through dD
dT and, in turn, the change in durables affecting demand through fD .7 Since

we can imagine the timescale at which the stock of durables changes to be long, or slow-acting,

we can consider the sum of the direct and indirect effects to be the long-run response. In our

empirical strategy, we estimate all three objects in Equation (2) to create an adaptation-inclusive

temperature response function.

3 Data

3.1 Electricity demand

The analysis is made possible due to a rich new dataset of hourly electricity consumption for

each of Canada’s ten provinces. The dataset was constructed in part from publicly available

data in provinces with competitive electricity markets, but in most cases from the collection of

private data directly from the respective provincial utilities and/or balancing authorities. For

each province, the data consist of a time series of hourly system-wide consumption over the

period 2001–2015.8 Thus, for most provinces there are roughly 131,000 observations. Hourly

consumption varies significantly across provinces and by season, reflecting large population

differences and seasonal electricity uses that differ by province. As this is total system-wide con-

sumption, it also represents a mix of residential, commercial and industrial demand. Summary

statistics are listed in Table A1 of the Appendix.

6This is what Davis and Gertler (2015) call the intensive margin, or what Burke and Emerick (2016) and Graff Zivin
et al. (2018) call the short-run response.

7The change in stock leads Davis and Gertler (2015) to refer to this channel as the extensive margin.
8For PE, NS, NL and QC, the data are only available for 2007 onwards.
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Figure 1: Observable temperature-sensitive demand drivers

Notes: Each bar represents an annual value for the years 2001–2015. Data from Natural Resource Canada’s
Comprehensive Energy Use Database (CEUD).

3.2 Temperature-sensitive demand drivers

We use data on temperature-sensitive demand drivers from two sources. First, we collect data

on air conditioner penetration, electric heat penetration and residential shares of total electricity

demand from Natural Resource Canada’s Comprehensive Energy Use Database (CEUD). The

CEUD data is an annual province-level panel from 2001 to 2015 with significant cross-sectional

and temporal variation (see Figure 1). Residential air conditioner penetration has grown in

all provinces in the years 2001–2015, however, there remain large differences across provinces

(greater than 80% in ON vs less than 10% in NL). Residential electric heat varies across provinces,

but stands out in QC—a province with large (and relatively cheap) hydro-electric resources.

Residential shares are roughly bi-modal, with most provinces having roughly one-third of their

total demand attributed to the residential sector, whereas AB, SK and PE have significantly

lower residential shares. In the cases of AB and SK this is due to large electricity-intensive

industrial sectors, whereas PE has a large commercial sector relative to residential.

Second, for the estimation of a model of air conditioner adoption, we collect household level

microdata from Statistics Canada’s Household and the Environment Survey (HES). The HES

data come in several waves (we use the 2006, 2007, 2009, 2011 and 2013 waves of the HES) and

contain information on air conditioner ownership, income, household demographic variables,

ownership or rental status, and household age and size. The data are provided at the Census

Subdivision (city) level, which we can then match to temperature data at the same level.

3.3 Historical temperature

We collect data from all active weather stations in each province from Environment Canada

to calculate population-weighted hourly temperatures for each province for each hour of the

15 year period corresponding to the demand data. Details of our approach to collecting and
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aggregating the historical temperature data are provided in Appendix C. We then merge the

hourly temperature data with our electricity demand data. Table A1 summarizes mean seasonal

temperatures across the provinces. Mean summer temperatures range from 10.2 to 15.2◦C,

whereas mean winter temperatures show wider variation: from -9.8◦ in Manitoba (central

Canada) to +4.0◦ in the west coast province of British Columbia.

3.4 Projected temperature

We obtain forecasts of future temperatures based on statistically downscaled global climate

model outputs from the Pacific Climate Impacts Organization at the University of Victoria.9 For

our main results, we use an ensemble of projections from 12 global climate models under from

CMIP5—the Coupled Model Intercomparison Project Phase 5.10

The data include temperature projections for mid-century (2041-2060) and end-century

(2081-2100) at a roughly 10km gridded spatial granularity. We then geo-match the individ-

ual coordinates to 2016 Canadian census population data to produce population-weighted

projections at the province level. We repeat this process for two Representative Concentration

Pathway scenarios, representing alternative assumptions regarding mitigation efforts.11 RCP 8.5

represents a relatively unchecked pathway for emissions, where little to no mitigation of green-

house gas emissions are taken, and correspondingly large temperature increases (roughly 5.5◦C

by end-century for the national average). RCP 4.5 can be considered the moderate emission

scenario, with end-of-century temperature increases of roughly 3◦C across Canada.

Figure 2 plots the mid- and end-century projected changes to mean temperature from the

ensemble model for both the RCP4.5 and 8.5 scenarios. The projected temperature changes

differ significantly by month and province.

We incorporate changes to the potential variance of hourly temperature in the following

manner. In addition to projected changes to mean temperature, we also collect projected

changes to minimum and maximum temperatures, by month, at the same spatial aggregation

as described above (we plot changes to mean, min and max temperatures in the Appendix,

Figures A2 and A3). We then interpolate hourly projected changes using the expected changes in

minimum, maximum and mean temperatures.12 We find that, for most provinces, the variance

of intraday temperature decreases in winter months, with minimum temperatures rising more

than maximum temperatures, while expanding slightly in summer months.

9Source: https://pacificclimate.org/data/statistically-downscaled-climate-scenarios
10We take the simple average of projection from the following generalized circulation models (GCMs): ACCESS1.0,

CanESM2, CCSM4, CNRM-CM5, CSIRO-Mk3-6.0, GFDL-ESM2G, HadGEM2-CC, HadGEM2-LR, INM-CM4,
MPI-ESM-LR, MRI-CGCM3, MIROC5. We use both the RCP8.5 (high emissions) and RCP4.5 (medium emissions)
scenarios for our analysis.

11For the main results in Section 5 we use RCP 8.5, but include results from RCP 4.5 in the Appendix. For a thorough
overview of representative concentration pathways, see Van Vuuren et al. (2011).

12The interpolation procedure is described in detail in Appendix B.
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Figure 2: Projected temperature changes

Notes: Projected population-weighted temperature changes (◦C) by province and month between 1981-2000 baseline
and two periods: mid-century (2041-2060) and end-century (2081-2100). Based on the CMIP5 ensemble RCP8.5
(high emissions) and RCP4.5 (medium emissions) scenarios.
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4 Estimating temperature response functions

Our strategy to create temperature response functions (TRFs) involves three steps. We provide a

brief roadmap of the empirical strategy here, with more detail on each step below.

In Step 1, we exploit hourly temperature and consumption data to estimate a high resolution

fixed effects model that delivers the short run effect, or intensive margin, of temperature on

electricity consumption. This method allows for province-specific (unobserved) drivers of

demand.

In the next two steps, we incorporate the extensive margin, or long-run effect. Davis and

Gertler (2015) do so by applying a temperature response function estimated in the manner above

from a region with currently high air conditioner penetration to regions whose air conditioner

penetration is currently low and expected to rise. Instead, our method attempts to directly

estimate TRFs that are themselves functions of observable drivers of demand, such as air

conditioner penetration, electric heating share, and residential share of total demand, that can

be flexibly changed to incorporate adaptation.

This involves, in Step 2, re-estimating temperature response functions by conditioning on

selected key observable drivers of demand rather than unobserved regional differences. We note

that this method exposes us to potential omitted variable bias moreso than the well-identified

intensive margin in Step 1. While we cannot exclude this possibility entirely, we address this

issue more fully below by demonstrating the strong fit between TRFs estimated using the two

methods when evaluated at historical levels of key observables.

Finally, in Step 3, we estimate a model of air conditioner adoption that can be used to inform

the long run temperature response at higher levels of air conditioner penetration. Having

estimated TRFs as functions of air conditioner penetration in Step 2, we can thus plug in our

projected air conditioner levels rather than relying on using a TRF from another region with

currently high levels of air conditioning. The combination of Steps 2 and 3 can be viewed as a

tractable alternative to the method of Davis and Gertler (2015) which allows for more flexible

inclusion of adaptation while maintaining other province-specific characteristics.

Step 1: Short run temperature response

We estimate the relationship between temperature and electricity consumption using our hourly

dataset of historical temperatures and electricity consumption by province. Referring to Eq.2

of the conceptual framework, we estimate the first term fT , using a fixed effects approach on

the rich hourly data. Specifically, we run ten separate regressions—one for each province—

regressing hourly electricity consumption on temperature variables and a rich set of datetime

fixed effects:
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log(ypt ) =
∑
b

β
p
bT

p
tb+ γ

pθt + ε
p
t (3)

Temperature enters semi-parametrically, with T
p
tb representing the share of population in

province p for which temperature at date-time t falls in the temperature bin b. Bins are defined

in 2◦C increments from -45◦C to +39◦C, the full range of hourly temperatures in Canada from

2001–2015.13

A large number of unobserved factors in addition to temperature influence electricity con-

sumption in any given period. In order to identify the effect of temperature on electricity

consumption, we employ a fixed effects strategy that controls for unobserved factors that vary

predictably over time. Specifically, θt contains hour-of-day, day-of-week, day-of-year, statutory

holiday, and year fixed effects (dummy variables). Hour-of-day dummy variables absorb sys-

tematic differences in electricity consumption that occur within a day. This is important, as

temperature also varies across the day. Day-of-year dummy variables soak up any variation in

electricity consumption that occurs over the year, such as seasonal variation in consumption.

Year dummy variables pick up changes in consumption that occur from one year to the next,

for example due to changes in population or in the quality of housing stock. Day-of-week and

statutory holiday dummy variables pick up variation in electricity consumption that occurs

across days of the week or on holiday days. Successful identification of the effect of temperature

on short-run electricity consumption requires that unobserved shocks to electricity consumption

are not correlated with temperature after conditioning on the fixed effects described above.

Because of the high resolution of fixed effects covering key drivers of electricity demand that

we include in our specification, as well as year fixed effects making our identification based

on within-year variation, we believe that this specification should successfully identify the

short-run effect of temperature on consumption.14

We show estimation results graphically for three large provinces with distinct temperature

response functions in Figure 3.15 The interpretation of the value of the function is the percentage

change in electricity consumption for a given hourly temperature relative to the omitted 17-19◦C

bin. Ontario, with the highest share of household air conditioner penetration of all provinces

in Canada, has the steepest “right-side” temperature response function slope—consumption

increases sharply at hot temperatures as a result of cooling demand. Whereas Quebec, with its

steep “left-side” slope is the province with the highest share of households using electric heat

13An alternative specification is to use the concept of heating (cooling) degree hours, which count the number of
degrees below (above) an arbitrary threshold, typically 18◦C. While common in the electricity literature, the
semi-parametric specification allows for a more flexible non-linear response.

14Smith (2016) and Rivers (2016) use similar methods involving high resolution fixed effects to examine the causal
effect of daylight saving time on traffic fatalities (Smith) and electricity demand (Rivers). Auffhammer et al. (2017)
and Wenz et al. (2017) use similar methods for their identification of short run temperature response functions.

15Short run temperature response functions for all provinces are shown in the Appendix, Figure A1.
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Figure 3: Temperature response functions and end-century (RCP8.5) temperature changes

for 3 major provinces

Notes: The temperature response function represents the coefficients of a regression of log(demand) on 2◦C tem-
perature bins and fixed date effect controls, relative to the 17-19◦C bin. In other words, the percentage change in
electricity consumption as temperatures differ from 17-19◦C. The shaded region represents the 95% confidence
interval with Newey-West heteroskedasticity and autocorrelation consistent standard errors calculated using a 168
hour (1 week) lag. The bottom panels show the density of historical (blue) and projected (red) hourly temperatures
for end-century (RCP8.5).

as their primary heating source and thus heating degree sensitivity—consumption increases

sharply as temperature drops below a nadir level of roughly 14◦C. Alberta, with the highest

industrial share of electricity demand of any province (and thus low share of residential demand),

has a rather flat temperature response function, reflecting weak temperature sensitivity. The

bottom panels in Figure 3 show historical and projected future hourly temperatures (RCP8.5

scenario) for each region at end-century.

Step 2: Re-estimating temperature response based on observables

The prior section used high resolution fixed effects estimated separately by province to allow us

to cleanly identify the causal effect of changes in temperature on short-run electricity demand.

However, while the fixed effects are useful for identification, they also prevent us from under-

standing structural reasons why temperature responses might differ. In this section, we remove

the province-specific estimation, and instead estimate a single temperature response equation

based on key observable temperature-sensitive characteristics that differ across space (province)

and time (year).16 This allows us to understand what drives differences in temperature re-

16Another way to think of our previous estimation method is as a single regression whereby province dummies are
interacted with temperature bins and fixed effects. In this section’s specification, we instead interact temperature
variables with the vector of observables, thus any differences in temperature responsiveness are explained by
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sponsiveness across provinces and time. Accordingly, this allows for flexible counterfactual

scenarios that include adaptive behaviour in response to higher temperatures, such as increased

air conditioner penetration, that in turn affect temperature sensitivity in the long run.

To clarify this approach, we show how our empirical strategy aligns with our conceptual

framework with the following illustration. Consider a version of Equation (3), but as a single

regression, rather than ten separate provincial regressions, and including key observables D

and their interaction with temperature. For the sake of building intuition, we simplify the

temperature notation by dropping the semi-parametric binned temperature notation and revert

to a generic T purely for exposition:

log(ytp) = β1Ttp+ β2Dtp+ β3TtpDtp+ γθt + ηp+ εt (4)

Differentiating Equation (4) with respect to T gives the marginal effect of temperature on

demand. Rearranging highlights the equivalency of this empirically-estimable equation to our

conceptual framework:

∂ logy
∂T

= β1 + β2
∂D
∂T

+ β3D(T ) + β3T
∂D
∂T

= β1 + β3D(T )︸          ︷︷          ︸
fT (T ,D)

+(β2 + β3T )︸       ︷︷       ︸
fD (T ,D)

∂D
∂T

(5)

Thus, our challenge is to estimate the above β’s to estimate temperature response for a given

level of observable characteristics (D). To do so, we regress electricity demand on temperature

and observables as per Eq.4, replacing the generic temperature notation with heating and

cooling degree variables:

log(ytp) = β11CDtp+ β12HDtp+ β2Dtp+ β31CDtpDtp+ β32HDtpDtp+ γθt + ηp+ εt (6)

where CDtp and HDtp are cooling and heating degrees, i.e. the number of degrees actual

temperature is above or below, respectively, a neutral temperature baseline.17 This is a slightly

less flexible specification than temperature bins, but still allows for different trends on either

side of the neutral temperature baseline. It also greatly simplifies the regression and delivers

easily interpretable coefficients.

This regression specification requires taking a stand on the elements of the temperature-

sensitive durables vector, D. We include air conditioner and electric heating penetration levels

and residential share of electricity demand, which we observe for each province-year. We again

differences in observables rather than unobserved provincial heterogeneity.
17We use 14◦C as our neutral temperature baseline as this is the observed average nadir of demand from the

previously estimated short-run temperature response functions across Canada.
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Table 1: Regression estimates of demand on observables

Dependent variable:

log(load)

(1) (2)

Cooling degrees (cd) 0.006∗∗∗ (0.002) 0.020∗∗∗ (0.003)
Heating degrees (hd) −0.008∗∗∗ (0.001) −0.008∗∗∗ (0.001)
cd×AC 0.029∗∗∗ (0.002) −0.007 (0.007)
cd×Res Share −0.024∗∗∗ (0.007) −0.072∗∗∗ (0.012)
cd×AC×Res Share 0.115∗∗∗ (0.025)
hd×Electric Heat 0.019∗∗∗ (0.001) 0.019∗∗∗ (0.002)
hd×Res Share 0.030∗∗∗ (0.003) 0.027∗∗∗ (0.007)
hd×Electric Heat×Res Share 0.005 (0.011)

Observations 1,171,966 1,171,966
Adjusted R2 0.996 0.996

Notes: Newey-West HAC standard errors in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

control for time fixed effects as well as province fixed effects that are, importantly, no longer

interacted with temperature. Thus, the heterogeneous effect of temperature on demand across

provinces comes only through differences in the observable characterized represented by D.

We estimate multiple variants of Equation (6), with results listed in Table 1. The first

specification is the most straightforward: we include cooling and heating degrees, elements

of D (air conditioner penetration, electric heating penetration and residential share) and the

interaction between the temperature variables and observables. The second model augments

the first by interacting residential share with air conditioner and electric heat penetration. This

allows the potential for greater effect of durables at higher shares of temperature-sensitive

residential demand. Newey-West heteroskedasticity and auto-correlation consistent standard

errors are calculated with a 168 hour (one week) lag, as per the short run estimates.

Looking at Column 1, the sign of the coefficients is as expected: the sensitivity of demand to

cooling degrees (temperature above 14◦C) increases with greater air conditioner penetration (as

seen by the significantly positive coefficient on cd ×AC). Similarly, the sensitivity of demand to

heating degrees (temperature below 14◦C) increases with greater electric heating penetration

(as seen by the coefficient on hd ×ElectricHeat). In Column 2, the interaction term between air

conditioner penetration and cooling degrees is rendered insignificant, but the effect is observed

via the strongly positive triple interaction term with residential share. Cooling demand is

increasingly sensitive to air conditioner penetration at higher levels of residential share.

Using these estimates, we can calculate temperature response functions holding the stock

of durables constant at historical averages. Figure 4 plots the predicted temperature response
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Figure 4: Comparison of short run and predicted temperature response functions evaluated

at historical averages

Notes: Temperature response functions show the estimated effect of temperature on electricity demand relative to
18◦C. The short run estimates are shown by the solid lines with 95% confidence intervals (shaded). The predicted
temperature response functions evaluated at historical average levels of air conditioner penetration, electric heating
penetration and residential share of demand are shown by dashed lines (confidence intervals omitted on the latter
for figure clarity).

functions for three provinces, holding the elements ofD at historical average levels, as compared

to the short run temperature response functions estimated separately by province. This figure

highlights the strong explanatory power of this rather small set of observables in explaining the

heterogeneity across province-specific temperature sensitivity.

A key concern with this method is the possibility of omitted variable bias.18 We cannot

exclude this possibility entirely, however, we address this issue in several ways. First, we demon-

strate the strong fit of the predicted temperature response functions at historical observables

levels with the province-specific short run temperature response functions previously estimated.

This is shown graphically in Figure 4.

Second, we take a statistical approach. Our goal is to determine whether the selected observ-

ables in D sufficiently explain the underlying unobservable heterogeneity driving differences in

short run temperature response functions when estimated separately by province. Thus, we

take a straightforward approach to determining the appropriateness of the selected observables

by regressing the slopes of the short run temperature response functions (a linear proxy for the

estimated sensitivity to heating and cooling degrees) on the selected observables and examining

18The problem of selection on observables is not uncommon in empirical research. Oster (2017) proposes a method to
investigate the likelihood of bias due to selection on observables by generalizing the approach previously suggested
by Altonji et al. (2005). This involves estimating a coefficient of proportionality, δ, to determine how explanatory the
unobservables would have to be to render the coefficients of interest insignificant. However, this approach is not
entirely appropriate for our context. In the Oster (2017) selection on observables problem, the concern is whether
controls have been appropriately selected such that the coefficient of interest on the treatment variable is robustly
estimated. In our case, the selected observables are themselves the variables of interest, not simply controls.
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the degree to which the fitted results explain the variation in the data, i.e. the R-squared.

The explanatory power of this small set of observables—air conditioner penetration, electric

heat penetration and residential share of demand—is strong, showing an R-squared of 77-85%

depending on specification. Despite only 10 observations (one for each province) the adjusted

R-squared remains relatively strong despite only three observable variables used to explain the

provincial heterogeneity. The full goodness-of-fit regression results and added-variable residual

plots are shown in the Appendix.

Step 3: Modelling air conditioner adoption

The last part of obtaining the long run response involves estimating ∂D
∂T —the change in durables

in response to changing temperature. We focus solely on the effect of higher temperatures on

air conditioner penetration; we do not estimate temperature driven changes to electric heating

penetration or residential share of electricity since we consider these variables to be largely

driven by policy and economic factors rather than temperature.19

We estimate a model of air conditioner adoption using household level microdata from

Statistics Canada’s Household and the Environment Survey (HES) on air conditioner penetration,

in a similar approach as Davis and Gertler (2015). Specifically, we use cross-sectional variation

in temperature to identify the effect of climate variables on air conditioner penetration, while

conditioning on other variables. We use several waves of the HES public use microdata files,

extracting data on air conditioner ownership, income, household demographic variables, and

household size.20 We obtain the Census Subdivision (city) for each household in the survey, and

use historical weather data from Environment Canada to obtain measures of the climate in each

Census Subdivision.

ACict = δ0 + δ1T̃c+Hiθ+ψt + νict (7)

where ACict is a binary variable that takes on a value of one if the household owns an air

conditioner and zero otherwise, Hi is a vector of observed household covariates,21 and ψt is a

time fixed effect to account for changes in household air conditioner penetration over time that

are common across regions. The variable T̃c captures the exposure of city c to hot temperatures.

We measure the climate of cities using several different variables: (1) the highest monthly mean

19We include, however, the mechanical effect that increased air conditioner penetration would have on residential
share, all else equal, and modify residential share accordingly. Specifically, the modified residential share is equal
to the old residential share * (1−ACold ∗Avg AC per HH)/(1−ACnew ∗Avg AC per HH).

20We use the 2006, 2007, 2009, 2011, and 2013 waves of the HES.
21Household covariates include a binary variable that indicates whether the house is owned or rented, a categorical

variable that captures the level of education, a variable that captures the dwelling type (apartment or home) of
the dwelling, a variable that captures the number of people living in the household, indicator variables for the
presence of individuals aged 0-17, 18-64, and 65-plus in the household, and a categorical variable capturing
household income.
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temperature observed between 2000 and 2005, (2) the highest daily maximum temperature

observed between 2000 and 2005, (3) the mean temperature in July and August observed

between 2000 and 2005, and (4) the average of the maximum daily July and August temperature

observed between 2000 and 2005.22 We estimate the model using both linear probability, with

and without sampling weights provided by Statistics Canada, as well as probit models. We also

estimate a model that includes province fixed effects, such that the identification of the effect

of climate on air conditioner penetration is identified on within-province variation in climate.

This helps to purge the data of any province-specific factors (e.g., regulations, norms) that drive

air conditioner penetration.

We highlight the empirical relationship between residential air conditioner penetration and

climate in Figure 5. The top panel summarizes air conditioner penetration in each of the 33

cities contained in the Households and the Environment Public Use file, as well as the average

daily maximum July-August temperature observed between 2000 and 2005 in each city. There

is a clear positive relationship between these two variables, which is summarized by a probit fit

without any covariates (regression results for probit and OLS estimates including covariates

are listed in the Appendix). The bottom panel shows the current exposure to hot summer

weather weighted by population, as well as the projected exposure to different climates at the

end-of-century under an RCP8.5 scenario. The cross-sectional relationship between current

climate and air conditioner penetration suggests that future warming will induce substantial

increases in air conditioner penetration.

Motivated by the relationship in Figure 5, we estimate the relationship between climate

and air conditioner penetration using the household-level data as described above (results

shown in the Appendix). We find that for each 1 degree Celcius increase in the maximum

daily July-August temperature, the penetration of residential air conditioners increases by 16.8

percentage points. Using alternative definition for the hot temperature variable T̃ also delivers

positive and highly statistically significant relationship between the prevalence of warm weather

and the penetration of air conditioners. We include several robustness checks as well as a probit

model specification in the Appendix. We use our probit air conditioner adoption model to

estimate projected air conditioner ownership under different future climates. Under the RCP8.5

scenario, we estimate an air conditioner penetration that increases nation-wide from about 55%

today to above 99% in 2100.

Putting it all together: Long run temperature response functions

The above method of estimating temperature response response functions based on observable

characteristics allows us to run scenarios of future adaptation, whereby higher levels of air

22We focus on the years 2000 to 2005 because we were able to assemble a complete set of weather observations over
this period for all cities in our sample, without any entry or exit of weather monitoring stations.
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Figure 5: Air conditioner penetration as a function of climate

Notes: Top panel shows air conditioner penetration for a cross-section of individual census metropolitan areas
(weighted average of the 2006-2013 HES waves) plotted against a measure of hot summer temperature (average
maximum July-August temperature for 2000-2005). Bottom panel shows the distribution of mean maximum
July-August temperatures historically (blue) and projected end-century in the RCP8.5 scenario (red).

conditioner penetration increase temperature sensitivity to warmer temperatures. This increased

sensitivity is reflected in steepening right-side slopes of the temperature response functions.

Figure 6 plots how temperature response functions for AB, ON and QC change as air conditioner

penetrations increase from historical levels towards 100%.

Our multi-part method to incorporate adaptation extends the work by Davis and Gertler

(2015) who estimate ∂D
∂T for air conditioners in Mexico. In that case, future air conditioner

penetration is estimated based on projected temperature and income changes, however, the

effect of changing durables on demand is not estimated. Instead, Davis and Gertler (2015) apply

temperature response functions from a region with currently high air conditioner penetrations,

similar to their future projections. By modelling temperature response functions as functions

of the observable characteristics themselves rather than having to rely on using a comparable

region’s temperature response, our method allows for greater scenario analysis flexibility and

the ability to retain unobservable characteristics of each province.
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Figure 6: Temperature sensitivity at various levels of air conditioner penetration

Notes: The thick grey lines represent temperature response functions estimated separately by province. Thick blue
lines represent temperature response functions estimated conditional on observables, rather than province-specific,
evaluated at historic average levels. Their overlap highlights the strong explanatory power of these 3 key
observables. The remaining lines represent counterfactual temperature response functions at increasing levels of air
conditioner penetration, whereby the gap closes between historical and full (100%) penetration.

5 Projecting future electricity consumption

Combining our estimated temperature response functions with climate model temperature

projections, we project temperature-driven changes to future electricity consumption.23 We

present results both without and with adaptation in the form of increased air conditioner

penetration.24

Previous literature estimating the effect of climate change on energy demand has focussed

on projections of annual or seasonal demand (De Cian and Wing, 2017; Davis and Gertler,

2015). Given the instantaneous nature of electricity, and relative lack of storability, considering

peak demand is also important. Accordingly, Auffhammer et al. (2017) and Wenz et al. (2017)

consider the implications of climate change on both aggregate and peak electricity demand. We

go one step further, exploring how the intraday shape of electricity consumption will change in

the future. Intraday shape is important due to, again, electricity’s relative lack of storability. A

steeper “ramp”, i.e. the change in consumption from the lowest demand hour to the highest

within a day, imposes higher system costs, requiring more flexibility to manage.

23To project demand based on out-of-sample temperature projections (i.e. higher than previously observed), we
include a linear trend term above 18◦C in the specifications using temperature bins. We choose 18◦ by visual
inspection based on where a clear linear trend is established, slightly to the right of the low demand nadir of
14◦. Robustness checks to alternative thresholds, and even the inclusion of a multi-point spline, do not alter the
demand projections significantly. The temperature response functions conditioned on cooling degrees do not
require this modification.

24The main results are for end-century under the RCP8.5 emissions scenario. Projections using alternative RCP
scenarios and for mid-century are listed in the Appendix.

18



5.1 Average demand

Figure 7 shows projected changes to annual and seasonal electricity consumption. For the

country as a whole, the estimated change in annual electricity consumption is small and stands

in contrast to previous studies in warmer countries showing large increases. Using the short run

temperature response, annual consumption falls by 1.8%. When adaptation is incorporated,

whereby air conditioner penetration reaches nearly 100% nationally, annual Canadian electricity

consumption still only increases by 3.9%.25 This result speaks to the beneficial effect (from an

energy use perspective) of a warmer winter reducing heating demand and nearly offsetting the

entirety of the incremental summer cooling demand.

In the summer months, average demand increases across all provinces since temperature

in these months is mostly located on the upward sloping portion of the temperature response

functions where higher temperature increases electricity consumption. The effect is largest in

Ontario where the sensitivity to cooling degrees is steepest. British Columbia, despite its flatter

sensitivity to cooling degrees, also shows a significant increase. This is due to its warmer climate,

meaning fewer hours are located in the domain of heating demand, where higher temperature

decreases consumption.

In the winter months, we project average demand to fall across Canada. The effect is largest

in Quebec, New Brunswick and Newfoundland & Labrador, the three provinces where electric

heating is the dominant heating method and correspondingly steepest left-side slope of their

temperature response functions.

5.2 Peak demand

The importance of peak demand relates to the generation capacity requirements of the electricity

system. Lack of storability means that the system must have sufficient capacity (or capability to

generate) during the highest demand periods. The impact on the electricity system therefore

depends not simply on how much demand increases, but when. An increase during non-peak

period has no effect on peak capacity requirements.

Most provinces in Canada are currently winter peaking. As such, rising temperature reduces

peak capacity demands in most provinces using only short run responses (Figure 8, left panel).

Peak demand increases, however, for the two summer-peaking provinces of Saskatchewan and

Ontario, and slightly for Alberta, which switches to summer-peaking even without including

the effect of increased air conditioning.

When we incorporate adaptation in the form of greater air conditioner penetration, the

increase in summer-peaking provinces is amplified (Figure 8, right panel). Ontario’s peak

demand increases by 38% (vs 10% using only short run responsiveness) implying roughly

25For full results see Tables A2 and A3 in the Appendix.
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Figure 7: Annual and seasonal demand change (RCP8.5, End-century)

Notes: Maps show the percentage change in annual and seasonal total electricity consumption by province at
end-century under the high emission (RCP8.5) scenario. The left column uses the short run temperature response.
The right column incorporates adaptation from increased air conditioner adoption to provide a long run response.
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10GW of new generating capacity will be needed in that province solely due to temperature.26

Furthermore, many provinces see their seasonal peak flipping from winter to summer leading

to peak demand increases. BC, AB, MB and NS all go from winter peaking to summer peaking

electricity systems (Figure 9). Alberta, in particular, sees a large increase (19.6%) in peak

demand due to a significant increase in air conditioner adoption and relatively high hourly

temperatures in the peak of summer.

Figure 8: Peak demand change (RCP8.5, End-century)

Notes: Maps show the percentage change in peak hour demand by province at end-century under the high emission
(RCP8.5) scenario. The left column uses the short run temperature response. The right column incorporates
adaptation from increased air conditioner adoption to provide a long run response.

Figure 9: Seasonal peak hour demand (RCP8.5, End-century)

Notes: Maps show the period during which the annual hourly peak occurs, by province at end-century under the
high emission (RCP8.5) scenario. The first column shows the historical peak, with only two provinces (SK and ON)
having summer peaks. The second column uses the short run temperature response. The third column incorporates
adaptation from increased air conditioner adoption to provide a long run response.

26For full results see Tables A4 and A5 in the Appendix.
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5.3 Intraday demand

Having considered changes to average and peak demand, we investigate the effect of rising

temperatures on the intraday shape of electricity consumption. Figure 10 shows the change in

the intraday consumption profile for the province of Ontario. This figure shows average hourly

consumption over the summer period for each hour of the day. Consumption increases across all

hours, but the increase is clearly larger in the peak demand hours of the afternoon as compared

to the morning hours. As a result, there is a significant increase in the intraday “ramp”, i.e. the

difference between the minimum and maximum demand within a day. This finding is more

pronounced at higher levels of air conditioner penetration. The max-min difference for an

average summer day in Ontario rises from roughly 5,000MW (historical) to 6,200MW (without

adaptation) and finally to 7,400MW (with increased air conditioning).

Figure 10: Intraday shape of summer demand in Ontario, historical and projected (End-

century, RCP8.5)

Notes: Historical and projected end-of-century intraday demand using RCP8.5 temperature projections and authors’
estimated temperature response functions, with and without adaptation.

Figure 11 plots the change in the diurnal range of demand for all provinces for each month of

the year. Unlike the effect on average or peak demand, the effect on intraday ramp requirements

is consistent across all provinces: all provinces show showing a substantial increase in diurnal

range of demand in the summer months. For some provinces, the diurnal range increases by as

much as 100%, i.e. a doubling. In winter, most provinces see a slight decrease with the intraday

shape getting flatter. Without adaptation, the largest increases are in the shoulder months,

namely May and October.
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Figure 11: Percentage change in min-to-max intraday demand (End-century, RCP8.5)

Notes: Plots show the percentage change in minimum to maximum intraday demand as a result of rising
temperatures across all Canadian provinces, with and without adaptation. Forecast period 2081-2100. RCP8.5 (high
emissions) scenario.

This challenge of an increased ramping requirement echoes a similar need arising from the

supply side due to an increased share of renewable energy, notably solar. In California, for

example, a large and growing share of solar generation has reduced net load during the sunny

middle-of-the-day hours while increasing the ramping requirement into the evening peak as

solar wanes (CAISO, 2019). Our finding, coming from the demand side, highlights the potential

for higher temperatures to increase this flexibility challenge.

6 Conclusion

This paper finds that for a colder country, such as Canada, rising temperature due to climate

change is unlikely to result in large increases in overall electricity use. In the absence of

adaptation, we find a small (1.8%) decrease in national electricity consumption in the high

emissions (RCP8.5) scenario. Incorporating an increase in air conditioner adoption as a result of

higher temperatures, annual demand increases by 3.9%. Given Canada’s colder climate, it is

perhaps not surprising to see a much smaller effect as compared to other results in the literature

that have focussed on warmer climates.

In terms of peak demand, the results are mixed across the provinces. Summer-peaking

provinces see peak demand increases, both with and without more air conditioning, whereas

provinces with significant electric heating see peak demand decline even at higher air condi-
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tioner levels. In most provinces, however, the annual peak hourly demand shifts from winter to

summer. It is ambitious to project estimated costs as a result of end-of-century demand changes,

but as a rough estimate we can use current values for peaking capacity. At $1,000 per kilowatt,

the aggregate increase in peak demand across Canada would require an investment of roughly

$13 billion (USD).

An important aspect of projected consumption changes due to higher temperature is the

effect on the shape of intraday demand. We find that “ramping” requirements—the ability to

swing from low to high demand within a day—are expected to increase substantially across

all provinces. This finding, coming from the demand side, adds to the growing need for more

flexibility on electricity grids coming from changes on the supply side of the market, where the

cost of variable renewable energy is falling and their share is growing.27 The so-called “duck

curve” in California summarizes this issue: more solar generation in the middle of the day

leads to a steep ramp in net demand in the afternoon (CAISO, 2016). In short, we find higher

temperatures have the potential to “stretch the duck”. While we do not place a cost estimate on

this effect, it speaks to the increasing value of flexibility—be it in the form of storage, peaking

capacity or load-shifting—to better manage an increasing variable supply and wider-ranging

demand on future electricity systems.

In sum, our paper adds to the growing literature quantifying the effects of higher temper-

atures arising from climate change on important economic variables, in this case electricity

consumption. We provide a method to incorporate adaptation by estimating temperature re-

sponse functions as functions of key temperature-sensitive observables coupled with a model

of air conditioner adoption at the household level. Our finding regarding intraday demand

emphasizes the value and importance of capacity and flexibility, as well as the importance of

understanding more than average effects when it comes to difficult-to-store electricity.

27On the demand side, recent analysis from the California Energy Commission (CEC, 2018) has shown that electric
vehicle charging is expected to be concentrated when drivers return home from work, exacerbating the problem
of meeting net demand as solar fades in the afternoon. Our finding highlights another potential issue: higher
temperatures increasing ramping requirements, exacerbating both the EV charging and duck curve issues.
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A Appendix

Summary Statistics

Table A1: Summary Statistics

Average Demand (aMW) Peak Demand (MW) Mean Temp (◦C)
Summer Winter Summer Winter Summer Winter

BC 6254 7687 9061 11039 13.9 4.0
AB 7711 8296 10520 11229 11.1 -5.9
SK 2297 2623 4654 3682 11.7 -9.6
MB 2138 2948 3464 4366 13.3 -9.8
ON 16211 17440 27005 24979 15.2 -2.0
QC 18014 25203 29411 39266 14.3 -4.7
NB 1385 1966 2543 3326 13.1 -3.7
PE 135 150 208 265 12.8 -2.6
NS 1198 1510 1806 2192 13.1 -0.5
NL 614 936 1271 1523 10.2 -2.1

Notes: Summary statistics are for 2001–2015 (2007–2015 for PE, NS, NL and QC). Summer
refers to April–October, winter refers to November–March. An average MW, or “aMW”, is the
total MWh of seasonal demand divided by the number of hours in the season. Temperature data
are population-weighted averages of stations within each province.
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Temperature response functions

Figure A1: Temperature response functions for each province

Notes: Temperature response functions estimate the percentage change in demand relative to 18◦C. Shaded areas
represent 95% confidence intervals using Newey-West HAC standard errors.
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Projected changes to mean, min and max temperature

Figure A2: Projected temperature changes under RCP 8.5
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Figure A3: Projected temperature changes under RCP 4.5
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Change in average demand tables

Table A2: Change in average demand, high emission scenario (RCP8.5)

End-of-century projection

Without Adaptation (∆%) With Adaptation (∆%)

Summer Winter Annual Summer Winter Annual
BC 0.3 -6.5 -2.9 13.1 -5.5 4.4
AB 1.2 -1.3 0.1 6.5 0.0 3.7
SK 2.5 -2.7 0.2 6.4 -1.7 2.7
MB 2.9 -7.8 -2.4 12.2 -6.1 3.2
ON 7.7 -4.3 2.5 15.1 -3.5 7.0
QC -0.3 -9.7 -5.0 11.9 -8.1 1.9
NB -1.5 -10.1 -5.9 11.4 -8.0 1.6
PE 1.7 -4.5 -1.1 5.8 -3.7 1.6
NS -0.1 -7.5 -3.6 14.8 -5.3 5.3
NL -6.1 -14.4 -10.4 -1.6 -13.2 -7.6
CAN 2.5 -6.6 -1.8 11.9 -5.3 3.9

Mid-century projection

Without Adaptation (∆%) With Adaptation (∆%)

Summer Winter Annual Summer Winter Annual
BC -0.3 -3.8 -1.9 6.8 -2.9 2.3
AB 0.6 -0.7 0.0 4.1 0.6 2.6
SK 1.2 -1.5 0.0 4.1 -0.5 2.1
MB 1.3 -4.4 -1.5 8.3 -2.5 3.0
ON 4.2 -2.8 1.2 9.8 -2.0 4.7
QC -0.6 -5.9 -3.3 8.4 -4.1 2.2
NB -1.3 -6.4 -3.9 7.5 -4.3 1.5
PE 0.8 -2.9 -0.8 3.7 -2.1 1.1
NS -0.4 -4.7 -2.4 9.8 -2.5 4.0
NL -4.0 -9.0 -6.6 -1.3 -7.9 -4.7
CAN 1.1 -4.0 -1.3 7.8 -2.7 2.9

Notes: Summer refers to April–October, winter refers to November–March.
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Table A3: Change in average demand, medium emission scenario (RCP4.5)

End-of-century projection

Without Adaptation (∆%) With Adaptation (∆%)

Summer Winter Annual Summer Winter Annual
BC -0.3 -3.6 -1.9 8.6 -2.3 3.5
AB 0.5 -0.7 0.0 4.3 0.8 2.8
SK 1.1 -1.4 0.0 4.0 -0.3 2.1
MB 1.1 -4.1 -1.5 8.1 -2.1 3.0
ON 3.9 -2.6 1.0 9.5 -1.8 4.6
QC -0.6 -5.5 -3.1 8.4 -3.6 2.4
NB -1.3 -5.9 -3.6 8.0 -3.5 2.2
PE 0.7 -2.7 -0.8 3.8 -1.9 1.3
NS -0.4 -4.4 -2.3 10.3 -1.9 4.5
NL -3.6 -8.2 -6.0 -0.6 -6.8 -3.8
CAN 1.0 -3.8 -1.3 7.9 -2.3 3.1

Mid-century projection

Without Adaptation (∆%) With Adaptation (∆%)

Summer Winter Annual Summer Winter Annual
BC -0.4 -2.8 -1.5 5.7 -1.7 2.2
AB 0.4 -0.6 0.0 3.5 0.9 2.4
SK 0.8 -1.1 0.0 3.4 0.0 1.9
MB 0.8 -3.1 -1.1 7.1 -1.1 3.0
ON 3.0 -2.1 0.8 8.1 -1.3 4.0
QC -0.6 -4.3 -2.4 7.4 -2.3 2.6
NB -1.1 -4.7 -2.9 6.6 -2.4 2.1
PE 0.5 -2.2 -0.7 3.0 -1.3 1.1
NS -0.4 -3.4 -1.8 8.5 -1.2 3.9
NL -2.8 -6.5 -4.7 -0.5 -5.3 -3.0
CAN 0.7 -2.9 -1.0 6.6 -1.5 2.8

Notes: Summer refers to April–October, winter refers to November–March.
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Change in peak demand tables

Table A4: Change in peak hour demand, high emission scenario (RCP8.5)

End-of-century projection

Historical Without Adaptation With Adaptation
Peak MW Peak MW ∆MW ∆% Peak MW ∆MW ∆%

BC Winter 11039 Winter 10404 -635 -5.8 Summer 13072 2033 18.4
AB Winter 11229 Summer 11223 -6 -0.1 Summer 13432 2203 19.6
SK Summer 4654 Summer 4813 159 3.4 Summer 4941 288 6.2
MB Winter 4366 Winter 4066 -300 -6.9 Summer 4463 97 2.2
ON Summer 27005 Summer 29623 2618 9.7 Summer 37365 10360 38.4
QC Winter 39266 Winter 34732 -4534 -11.5 Winter 35944 -3322 -8.5
NB Winter 3326 Winter 3094 -232 -7.0 Winter 3293 -33 -1.0
PE Winter 265 Winter 247 -18 -7.0 Winter 248 -17 -6.3
NS Winter 2192 Winter 2054 -138 -6.3 Summer 2569 377 17.2
NL Winter 1523 Winter 1392 -131 -8.6 Winter 1420 -103 -6.7

Mid-century projection

Historical Without Adaptation With Adaptation
Peak MW Peak MW ∆MW ∆% Peak MW ∆MW ∆%

BC Winter 11039 Winter 10703 -336 -3.0 Summer 11423 384 3.5
AB Winter 11229 Winter 11162 -67 -0.6 Summer 12802 1573 14.0
SK Summer 4654 Summer 4725 71 1.5 Summer 4783 129 2.8
MB Winter 4366 Winter 4221 -145 -3.3 Winter 4321 -45 -1.0
ON Summer 27005 Summer 28573 1568 5.8 Summer 35321 8316 30.8
QC Winter 39266 Winter 36430 -2836 -7.2 Winter 37660 -1606 -4.1
NB Winter 3326 Winter 3308 -18 -0.5 Winter 3507 181 5.5
PE Winter 265 Winter 251 -14 -5.4 Winter 252 -13 -4.7
NS Winter 2192 Winter 2112 -80 -3.6 Summer 2396 204 9.3
NL Winter 1523 Winter 1459 -64 -4.2 Winter 1486 -37 -2.5

Notes: Timing of seasonal peak listed in “Peak” columns. Summer refers to Apr–Oct. Winter refers to Nov–Mar.
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Table A5: Change in peak hour demand, medium emission scenario (RCP4.5)

End-of-century projection

Historical Without Adaptation With Adaptation
Peak MW Peak MW ∆MW ∆% Peak MW ∆MW ∆%

BC Winter 11039 Winter 10757 -282 -2.6 Summer 12389 1350 12.2
AB Winter 11229 Winter 11162 -67 -0.6 Summer 12980 1751 15.6
SK Summer 4654 Summer 4708 55 1.2 Summer 4758 105 2.2
MB Winter 4366 Winter 4221 -145 -3.3 Winter 4327 -39 -0.9
ON Summer 27005 Summer 28483 1478 5.5 Summer 35287 8282 30.7
QC Winter 39266 Winter 36430 -2836 -7.2 Winter 37728 -1538 -3.9
NB Winter 3326 Winter 3308 -18 -0.5 Winter 3525 199 6.0
PE Winter 265 Winter 251 -14 -5.4 Winter 253 -12 -4.6
NS Winter 2192 Winter 2147 -45 -2.1 Summer 2458 266 12.1
NL Winter 1523 Winter 1459 -64 -4.2 Winter 1491 -32 -2.1

Mid-century projection

Historical Without Adaptation With Adaptation
Peak MW Peak MW ∆MW ∆% Peak MW ∆MW ∆%

BC Winter 11039 Winter 10918 -121 -1.1 Summer 11221 182 1.6
AB Winter 11229 Winter 11162 -67 -0.6 Summer 12652 1423 12.7
SK Summer 4654 Summer 4676 23 0.5 Summer 4705 52 1.1
MB Winter 4366 Winter 4280 -86 -2.0 Winter 4373 7 0.2
ON Summer 27005 Summer 28177 1172 4.3 Summer 34604 7599 28.1
QC Winter 39266 Winter 36969 -2297 -5.9 Winter 38444 -822 -2.1
NB Winter 3326 Winter 3308 -18 -0.5 Winter 3514 188 5.7
PE Winter 265 Winter 256 -9 -3.4 Winter 258 -7 -2.7
NS Winter 2192 Winter 2147 -45 -2.1 Summer 2356 164 7.5
NL Winter 1523 Winter 1459 -64 -4.2 Winter 1487 -36 -2.4

Notes: Timing of seasonal peak listed in “Peak” columns. Summer refers to Apr–Oct. Winter refers to Nov–Mar.
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Testing goodness-of-fit of selected observables

Table A6 summarises the right-side and left-side slopes for each province’s short run temperature

response functions by re-estimating them using only cooling and heating degrees (with a baseline

of 14◦C) rather than temperature bins. These are presented alongside mean values for the key

observables.

Table A6: Temperature response function slope coefficients and observable averages

RHS slope (CD) LHS slope (HD) AC Electric Heat Res Share

BC 0.008 0.015 0.211 0.488 0.320
AB 0.005 0.002 0.202 0.424 0.167
SK 0.010 0.004 0.571 0.230 0.173
MB 0.015 0.011 0.635 0.563 0.358
ON 0.019 0.008 0.761 0.435 0.342
QC 0.008 0.014 0.524 0.818 0.356
NB 0.007 0.016 0.301 0.718 0.402
PE 0.009 0.008 0.261 0.341 0.142
NS 0.008 0.014 0.184 0.465 0.384
NL 0.007 0.024 0.061 0.646 0.374

Notes: The RHS slope and LHS slope refer to the right- and left-side slope coefficients for the short
run temperature response functions, i.e. the change in log(demand) for a 1◦C change in temperature
when above and below 14◦C, respectively. AC and Electric Heat are the mean penetration of air
conditioners and electric heating systems per household by province over the 2001-2015 period. Res
Share represents the share of total demand attributed to the residential sector.

Table A7 presents the results of regressions to determine the explanatory power of the

observables in explaining the provincial heterogeneity in slopes of short run temperature

response functions. Specifically, we regress, separately, the left- and right-side slopes of the short

run temperature response functions against provincial mean values of the observables, along

with variants that interact residential shares with air conditioner and electric heat penetration.

The explanatory power of these three observables is strong, showing an R-squared of 77-85%

depending on specification. Despite only 10 observations (one for each province) the adjusted

R-squared remains relatively strong despite only three observable variables used to explain the

provincial heterogeneity. Figure A4 presents added-variable residual plots (for specification (i)

in Table A7) to demonstrate the relationship between the RHS slope of the temperature response

functions and the three observable variables.
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Table A7: Testing for the explanatory power of observables

Dependent variable:

Cooling Degree Slope Heating Degree Slope

(1) (2) (3) (4) (5) (6)

AC 0.014∗∗∗ −0.013 −0.013 −0.012∗ 0.019 0.020
(0.003) (0.015) (0.031) (0.005) (0.026) (0.053)

Electric Heat −0.013∗ −0.018∗∗ −0.019 0.006 0.011 0.013
(0.007) (0.006) (0.051) (0.010) (0.011) (0.087)

Res Share 0.024∗ 0.005 0.003 0.042∗ 0.066∗ 0.068
(0.012) (0.015) (0.072) (0.018) (0.026) (0.124)

AC × Res Share 0.079 0.082 −0.096 −0.099
(0.045) (0.091) (0.078) (0.156)

Electric Heat × Res Share 0.005 −0.005
(0.134) (0.232)

Observations 10 10 10 10 10 10
R2 0.807 0.880 0.880 0.794 0.841 0.841
Adjusted R2 0.711 0.784 0.731 0.691 0.714 0.643
df 6 5 4 6 5 4

Notes: Standard errors clustered by year-month. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Figure A4: Added-value plot for Model 1 (above)
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Robustness checks for air conditioner regression

Table A8 shows the results from estimating a linear probability version of Eq.7. The table

reports the results from four separate regressions, each using an alternative definition of the

hot temperature variable T̃ in each city, as described above. In each case, the table shows that

there is a positive and highly statistically significant relationship between the prevalence of

warm weather and the penetration of air conditioners. We focus on column (4), because it

provides the best fit and is a natural way to describe the relationship between air conditioner

penetration and the climate. In this column, we regress air conditioner penetration on the

average July and August daily maximum temperature, as well as other covariates as described

above. The table shows that for each 1 degree Celsius increase in the maximum daily July-

August temperature, the penetration of residential air conditioners increases by 16.8 percentage

points. Air conditioner penetration is clearly quite sensitive to the prevalence of warm summer

temperatures.

Table A8: Linear probability model for air conditioner penetration with alternative climatic
variables

Dependent variable:

ac

(1) (2) (3) (4)

highestMonthlyMean 0.145∗∗∗

(0.001)

highestTemp 0.111∗∗∗

(0.001)

meanJulyAug 0.142∗∗∗

(0.001)

meanmaxJulyAug 0.168∗∗∗

(0.001)

Household weights No No No No
Observations 33,591 33,591 33,591 33,591
R2 0.304 0.280 0.253 0.325
Adjusted R2 0.304 0.279 0.253 0.325
Residual Std. Error (df = 33575) 0.413 0.421 0.428 0.407
F Statistic (df = 15; 33575) 978.756∗∗∗ 869.343∗∗∗ 758.589∗∗∗ 1,077.589∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In Table A9, we provide some robustness checks for this main result. In column (1), we
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estimate the same model, but this time using sampling weights provided by Statistics Canada to

ensure the sample is representative. Not surprisingly, the results are not substantially affected.

In column (2), we estimate a probit model rather than a linear probability model. The key

coefficient remains positive and highly statistically significant, and the average marginal effect

remains very close to the estimate using the linear probability model: a one degree increase

in the mean daily maximum July-August temperature is projected to increase air conditioner

penetration by 14.9 percentage points. In column (3), we estimate a linear probability model

with province fixed effects. In this case, the effect of climate on air conditioner penetration

is identified from within-province variation in temperature, which eliminates any province-

specific unobserved variables, such as building regulations or norms. The effect of climate

is somewhat smaller in this specification, but remains significant and relatively close to the

original specification. We use column (2) of Table A9 to project future air conditioner demand,

conditional on climate.

Table A9: Alternative functional forms for air conditioner penetration

Dependent variable:

ac

OLS probit OLS

(1) (2) (3)

meanmaxJulyAug 0.162∗∗∗ 0.527∗∗∗ 0.115∗∗∗

(0.001) (0.006) (0.002)

Average marginal effect - 0.149 (0.001) -
Household weights Yes No No
Province FEs No No Yes
Observations 33,591 33,591 33,591
R2 0.306 0.365
Adjusted R2 0.306 0.365
Log Likelihood −16,811.600
Akaike Inf. Crit. 33,655.200
Residual Std. Error 12.434 (df = 33575) 0.395 (df = 33567)
F Statistic 986.617∗∗∗ (df = 15; 33575) 839.626∗∗∗ (df = 23; 33567)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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B Interpolation procedure for hourly temperature projections

A limitation of our temperature projection data is that they lack hourly granularity. Instead,

the data provide projected values for monthly mean, minimum and maximum temperature.

To interpolate projected hourly temperature changes, we use the known values of projected

mean, minimum and maximum temperature, and impose a quadratic form to the distribution

of temperature changes between the lowest and highest original temperatures.

Specifically, we rank-order temperatures in each month from lowest to highest, and assume

that temperature changes take the form of y = a+ bx+ cx2, where x is the rank-order of the

historical hourly temperature observation and y is the projected change in temperature. We

know the value of a, this is the projected change in minimum temperature. We also know the

value of y evaluated at the highest temperature (N ), this is the projected change in maximum

temperature. We also know that the mean temperature change, in other words the integral of

this function over the range of lowest to highest temperatures divided by the number of hours,

must equal the projected change in mean temperature. Thus we have a problem with three

unknowns (a,b,c) and 3 constraints:

a= ∆Tmin (A1)

a+ bN + cN2 = ∆Tmax (A2)

1
N

∫ N

1
a+ bx+ cx2 = ∆Tmean (A3)

Integrating the 3rd constraint and solving this system of equations produces a function to

calculate the projected change for every hour of a given period (month containing N hours),

based on the projected values of ∆Tmin, ∆Tmax, and ∆Tmean:

∆Tx = ∆Tmin −
2x
N

(∆Tmax −∆Tmin) +
6x
N

(∆Tmean −∆Tmin)+

+
3x2

N2 (∆Tmax −∆Tmin)−
6x2

N2 (∆Tmean −∆Tmin) (A4)

where x is the rank-order of hourly historical temperature in the period.28

28This solution uses the simplifying approximation that at high values of N , the terms N − 1 and N2 − 1 are
approximately N and N2, respectively. Given for most months, N is equal to 720 or 744, this is a reasonable
approximation.
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C Historical temperature data

This section describes our approach to construction of a provincial temperature time series.

We first obtain hourly temperature for all weather stations that record hourly temperature

and that are active throughout 2000 to 2015 in each province. We retain only those weather

stations for which fewer than 50% of observations in this period are missing. We impute missing

observations for each remaining weather station using a regression-based approach, using

non-missing observations from all other active weather stations in the province as predictors.

Weather stations are weighted according to population weights. We obtain population in

each Census Sub-division from the 2011 Census of Population. For each Census Sub-division,

we find the nearest weather station (to the centroid of the Census Sub-division) and assign the

temperature at that station to the Census Sub-division. Population weights are then based on

the share of total provincial population represented by each temperature monitoring station.

Our regressions involve two transformations of the raw temperature data: discretizing the

temperature data into bins, and converting the temperature data into deviations from a base

temperature and expressing as heating degree or cooling degree hours. In each case, we apply

the transformations at each weather station separately, and apply the weights to the transformed

data subsequently.
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